Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microplast nanoplast ; 3(1): 24, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920865

RESUMEN

Plastics pollution research attracts scientists from diverse disciplines. Many Early Career Researchers (ECRs) are drawn to this field to investigate and subsequently mitigate the negative impacts of plastics. Solving the multi-faceted plastic problem will always require breakthroughs across all levels of science disciplinarity, which supports interdisciplinary discoveries and underpins transdisciplinary solutions. In this context, ECRs have the opportunity to work across scientific discipline boundaries and connect with different stakeholders, including industry, policymakers and the public. To fully realize their potential, ECRs need to develop strong communication and project management skills to be able to effectively interface with academic peers and non-academic stakeholders. At the end of their formal education, many ECRs will choose to leave academia and pursue a career in private industry, government, research institutes or non-governmental organizations (NGOs). Here we give perspectives on how ECRs can develop the skills to tackle the challenges and opportunities of this transdisciplinary research field and how these skills can be transferred to different working sectors. We also explore how advisors can support an ECRs' growth through inclusive leadership and coaching. We further consider the roles each party may play in developing ECRs into mature scientists by helping them build a strong foundation, while also critically assessing problems in an interdisciplinary and transdisciplinary context. We hope these concepts can be useful in fostering the development of the next generation of plastics pollution researchers so they can address this global challenge more effectively.

2.
Nat Protoc ; 18(11): 3534-3564, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37816903

RESUMEN

Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium's conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Microplásticos/análisis , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
3.
NanoImpact ; 29: 100454, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781073

RESUMEN

Determining the potential for accumulation of Ag from Ag2S NPs as an environmentally relevant form of AgNPs in different terrestrial organisms is an essential component of a realistic risk assessment of AgNP emissions to soils. The objectives of this study were first to determine the uptake kinetics of Ag in mealworms (Tenebrio molitor) and woodlice (Porcellio scaber) exposed to Ag2S NPs in a mesocosm test, and second, to check if the obtained toxicokinetics could be predicted by single-species bioaccumulation tests. In the mesocosms, mealworms and woodlice were exposed together with plants and earthworms in soil columns spiked with 10 µg Ag g-1 dry soil as Ag2S NPs or AgNO3. The total Ag concentrations in the biota were measured after 7, 14, and 28 days of exposure. A one-compartment model was used to calculate the Ag uptake and elimination rate constants. Ag from Ag2S NPs appeared to be taken up by the mealworms with significantly different uptake rate constants in the mesocosm compared to single-species tests (K1 = 0.056 and 1.66 g dry soil g-1 dry body weight day-1, respectively), and a significant difference was found for the Ag bioaccumulation factor (BAFk = 0.79 and 0.15 g dry soil g-1 dry body weight, respectively). Woodlice did not accumulate Ag from Ag2S NPs in both tests, but uptake from AgNO3 was significantly slower in mesocosm than in single-species tests (K1 = 0.037 and 0.26 g dry soil g-1 dry body weight day-1, respectively). Our results are of high significance because they show that single-species tests may not be a good predictor for the Ag uptake in mealworms and woodlice in exposure systems having greater levels of biological complexity. Nevertheless, single-species tests could be used as a fast screening approach to assess the potential of a substance to accumulate in biota before more complex tests are conducted.


Asunto(s)
Isópodos , Nanopartículas del Metal , Tenebrio , Animales , Toxicocinética , Plata/análisis , Suelo
4.
Environ Pollut ; 323: 121267, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804882

RESUMEN

The relationship between the ubiquitous presence of microplastics in the environment and exposure of biota needs to be better understood, particularly for vulnerable species and their habitats. In this study, we address the presence of microplastics in the riverine habitat of a threatened lamprey species (Lampetra sp.), both in habitats with protective interventions in place (designated as Special Areas of Conservation), and those without these protective interventions. By sampling both riverbed sediments and larval lamprey, we provide a direct comparison of the microplastic loadings in both, and insights into how knowledge of sediment loadings might predict biological uptake. Microplastic particles, analysed using micro-Fourier transform infrared (µFTIR) spectroscopy, were detected in all samples of lamprey larvae and paired sediment, ranging in abundance from 1.00 to 27.47 particles g-1 in dry lamprey gastrointestinal tract (GIT) tissue, and 0.40 to 105.41 particles g-1 in dry sediment. The most urbanised catchment exhibited the highest average microplastic particle count in both lamprey and sediment. Across sites, the microplastic abundance in lamprey GIT tissue was not correlated with that of the surrounding sediment, suggesting that either specific polymer types are retained or other factors such as larvae residence time within sediment patches may influence biological uptake. The most encountered polymer types in lamprey from their immediate habitat were polyurethane, polyamide, and cellulose acetate. To the best of our knowledge, this is the first study to document microplastic contamination of larval lamprey in-situ, contributing another potential stressor to the population status of a vulnerable species. This highlights where further research on the impacts of plastic contamination of freshwater environments is needed to aid conservation management of this ecologically important species.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos/análisis , Lampreas , Biomasa , Contaminantes Químicos del Agua/análisis , Larva , Monitoreo del Ambiente , Sedimentos Geológicos/análisis
5.
Sci Total Environ ; 843: 157048, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779734

RESUMEN

The assessment of chemical mixture toxicity is one of the major challenges in ecotoxicology. Chemicals can interact, leading to more or less effects than expected, commonly named synergism and antagonism respectively. The classic ad hoc approach for the assessment of mixture effects is based on dose-response curves at a single time point, and is limited to identifying a mixture interaction but cannot provide predictions for untested exposure durations, nor for scenarios where exposure varies in time. We here propose a new approach using toxicokinetic-toxicodynamic modelling: The General Unified Threshold model of Survival (GUTS) framework, recently extended for mixture toxicity assessment. We designed a dedicated mechanistic interaction module coupled with the GUTS mixture model to i) identify interactions, ii) test hypotheses to identify which chemical is likely responsible for the interaction, and finally iii) simulate and predict the effect of synergistic and antagonistic mixtures. We tested the modelling approach experimentally with two species (Enchytraeus crypticus and Mamestra brassicae) exposed to different potentially synergistic mixtures (composed of: prochloraz, imidacloprid, cypermethrin, azoxystrobin, chlorothalonil, and chlorpyrifos). Furthermore, we also tested the model with previously published experimental data on two other species (Bombus terrestris and Daphnia magna) exposed to pesticide mixtures (clothianidin, propiconazole, dimethoate, imidacloprid and thiacloprid) found to be synergistic or antagonistic with the classic approach. The results showed an accurate simulation of synergistic and antagonistic effects for the different tested species and mixtures. This modelling approach can identify interactions accounting for the entire time of exposure, and not only at one time point as in the classic approach, and provides predictions of the mixture effect for untested mixture exposure scenarios, including those with time-variable mixture composition.


Asunto(s)
Cloropirifos , Insecticidas , Oligoquetos , Animales , Cloropirifos/toxicidad , Daphnia , Insecticidas/química , Toxicocinética
6.
Sci Total Environ ; 832: 155089, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35398126

RESUMEN

Microplastics (MP) are emerging contaminants with the capacity to bind and transport hydrophobic organic compounds of environmental concern, such as polybrominated diphenyl ethers (PBDEs). The aim of this study was to investigate the ingestion of nylon (polyamide) MP alone and when associated with PBDEs and their effects on Chironomus sancticaroli larvae survival and microbiome structure. Survival, PBDE uptake and microbial community composition were measured in fourth instar larvae exposed for 96 h to BDEs- 47, 99, 100 and 153 in the presence and absence of 1% w/w MP in sediment. Microbiome community structures were determined through high throughput sequencing of 16S small subunit ribosomal RNA gene (16S rRNA). Initial experiments showed that larvae ingested MP faster at 0.5% w/w MP, while depuration was more efficient at 1% w/w MP, although retention of MP was seen even after 168 h depuration. No mortality was observed as a result of PBDEs and MP exposure. MP had a negative effect on PBDE concentration within larvae (η2 = 0.94) and a negative effect on sediment concentrations (η2 = 0.48). In all samples, microbial communities were dominated by Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Gammaproteobacteria. Bacterial alpha diversity was not significantly affected by PBDEs or MP exposure. However, the abundance of discrete bacterial taxa was more sensitive to MP (X2 = 45.81, p = 0.02), and PBDE exposure. Our results highlight that C. sancticaroli showed no acute response to MPs and PBDEs, but that MPs influenced bacterial microbiome structure even after only short-term acute exposure.


Asunto(s)
Chironomidae , Microbiota , Animales , Chironomidae/metabolismo , Éteres Difenilos Halogenados/análisis , Larva/metabolismo , Microplásticos , Nylons , Plásticos , ARN Ribosómico 16S
7.
Sci Total Environ ; 807(Pt 3): 151022, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662614

RESUMEN

Microplastic fibres (MPFs) and nanoplastics (NPs) have the potential to be hazardous to soil organisms. Understanding uptake into organisms is key in assessing these effects, but this is often limited by the analytical challenges to quantify smaller-sized plastics in complex matrices. This study used MPFs and NPs containing inorganic tracers (In, Pd) to quantify uptake in the earthworm Lumbricus terrestris. Following seven days exposure, tracer concentrations were measured in earthworms and faeces. Earthworms exposed to 500 µg MPFs/g soil retained an estimated 32 MPFs in their tissues, while at 5000 µg MPFs/g earthworms retained between 2 and 593 MPFs. High variation in body burdens of MPFs was linked to soil retention in earthworms and reduced faeces production, suggesting egestion was being affected by MPFs. NPs uptake and elimination was also assessed over a more extended time-period of 42 days. After 1 day, NPs were no longer detectable in faeces during the elimination phase. However, some retention of NPs in the earthworms was estimated, not linked to retained soil, indicating not all NPs were eliminated. MPFs and NPs uptake can be quantified in earthworms and both particle types can be retained beyond the depuration period, suggesting the potential for longer-term accumulation.


Asunto(s)
Microplásticos , Oligoquetos , Animales , Plásticos , Suelo
8.
Environ Sci Technol ; 55(24): 16423-16433, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34878261

RESUMEN

Plastic pollution is increasingly perceived as an emerging threat to terrestrial environments, but the spatial and temporal dimension of plastic exposure in soils is poorly understood. Bioturbation displaces microplastics (>1 µm) in soils and likely also nanoplastics (<1 µm), but empirical evidence is lacking. We used a combination of methods that allowed us to not only quantify but to also understand the mechanisms of biologically driven transport of nanoplastics in microcosms with the deep-burrowing earthworm Lumbricus terrestris. We hypothesized that ingestion and subsurface excretion drives deep vertical transport of nanoplastics that subsequently accumulate in the drilosphere, i.e., burrow walls. Significant vertical transport of palladium-doped polystyrene nanoplastics (diameter 256 nm), traceable using elemental analysis, was observed and increased over 4 weeks. Nanoplastics were detected in depurated earthworms confirming their uptake without any detectable negative impact. Nanoplastics were indeed enriched in the drilosphere where cast material was visibly incorporated, and the reuse of initial burrows could be monitored via X-ray computed tomography. Moreover, the speed of nanoplastics transport to the deeper soil profile could not be explained with a local mixing model. Earthworms thus repeatedly ingested and excreted nanoplastics in the drilosphere calling for a more explicit inclusion of bioturbation in nanoplastic fate modeling under consideration of the dominant mechanism. Further investigation is required to quantify nanoplastic re-entrainment, such as during events of preferential flow in burrows.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Microplásticos , Plásticos , Suelo , Contaminantes del Suelo/análisis
9.
Sci Total Environ ; 793: 148654, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34182444

RESUMEN

A major gap in understanding nanomaterials behaviour in the environment is a lack of reliable tools to measure their available concentrations. In this research we use diffusive gradients in thin films (DGT) for measuring concentrations of zinc oxide nanoparticles (ZNO NPs) in soils. Available nanoparticle concentrations were assessed by difference, using paired DGT devices with and without 1000 MWCO dialysis membranes to exclude NPs. We used ZnO because its toxic effects are accelerated through dissolution to Zn2+. Our test soils had different pH and organic matter (OM) contents, which both affect the dissolution rate of ZnO NPs. Woburn (pH ≈ 6.9, OM ≈ 1.8%) and Lufa (pH ≈ 5.9, OM ≈ 4.2%) soils were spiked to a single concentration of 500 mg of ZnO NPs per 1 kg of soil and the available concentrations of ZnO NPs and dissolved zinc were evaluated in 3, 7, 14, 21, 28, 60, 90, 120, 150 and 180 day intervals using DGT. The results showed that the dissolution of ZnO NPs, as well as the available concentrations of both dissolved and nanoparticulate Zn, was much higher in Lufa soil than in Woburn. This work demonstrates that DGT can be used as a simple yet reliable technique for determining concentrations of ZnO NPs in soils and probing its dissolution kinetics.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Diálisis Renal , Suelo , Contaminantes del Suelo/análisis
10.
Environ Sci Technol ; 55(9): 6065-6075, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33848142

RESUMEN

To better understand nanoplastic effects, the potential for surface functionalization and dissolve organic matter eco-corona formation to modify the mechanisms of action and toxicity of different nanoplastics needs to be established. Here, we assess how different surface charges modifying functionalization (postive (+ve) aminated; neutral unfunctionalized; negative (-ve) carboxylated) altered the toxicity of 50 and 60 nm polystyrene nanoplastics to the nematode Caenorhabditis elegans. The potency for effects on survival, growth, and reproduction reduced in the order +ve aminated > neutral unfunctionalized ≫ -ve carboxylated with toxicity >60-fold higher for the +ve than -ve charged forms. Toxicokinetic-toxicodynamic modeling (DEBtox) showed that the charge-related potency was primarily linked to differences in effect thresholds and dose-associated damage parameters, rather than to toxicokinetic parameters. This suggests that surface functionalization may change the nature of nanoplastic interactions with membrane and organelles leading to variations in toxicity. Eco-corona formation reduced the toxicity of all nanoplastics indicating that organic molecule associations may passivate surfaces. Between particles, eco-corona interactions resulting in more equivalent effects; however, even despite these changes, the order of potency of the charged forms was retained. These results have important implications for the development of future grouping approaches.


Asunto(s)
Microplásticos , Nanopartículas , Poliestirenos , Animales , Caenorhabditis elegans , Microplásticos/toxicidad , Nanopartículas/toxicidad , Poliestirenos/toxicidad
11.
Environ Sci Technol ; 55(5): 3059-3069, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33559465

RESUMEN

Neonicotinoids are currently licensed for use in 120 countries, making accurate nontarget species sensitivity predictions critical. Unfortunately, such predictions are fraught with uncertainty, as sensitivity is extrapolated from only a few test species and neonicotinoid sensitivities can differ greatly between closely related taxa. Combining classical toxicology with de novo toxicogenomics could greatly improve sensitivity predictions and identify unexpectedly susceptible species. We show that there is a >30-fold differential species sensitivity (DSS) for the neonicotinoid imidacloprid between five earthworm species, a critical nontarget taxon. This variation could not be explained by differential toxicokinetics. Furthermore, comparing key motif expression in subunit genes of the classical nicotinic acetylcholine receptor (nAChR) target predicts only minor differences in the ligand binding domains (LBDs). In contrast, predicted dissimilarities in LBDs do occur in the highly expressed but nonclassical targets, acetylcholine binding proteins (AChBPs). Critically, the predicted AChBP divergence is capable of explaining DSS. We propose that high expression levels of putative nonsynaptic AChBPs with high imidacloprid affinities reduce imidacloprid binding to critical nAChRs involved in vital synaptic neurotransmission. This study provides a clear example of how pragmatic interrogation of key motif expression in complex multisubunit receptors can predict observed DSS, thereby informing sensitivity predictions for essential nontarget species.


Asunto(s)
Insecticidas , Receptores Nicotínicos , Animales , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Oligoquetos , Receptores Nicotínicos/genética , Toxicogenética
12.
Environ Sci Technol ; 55(4): 2430-2439, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33499591

RESUMEN

Current methods to assess the impact of chemical mixtures on organisms ignore the temporal dimension. The General Unified Threshold model for Survival (GUTS) provides a framework for deriving toxicokinetic-toxicodynamic (TKTD) models, which account for effects of toxicant exposure on survival in time. Starting from the classic assumptions of independent action and concentration addition, we derive equations for the GUTS reduced (GUTS-RED) model corresponding to these mixture toxicity concepts and go on to demonstrate their application. Using experimental binary mixture studies with Enchytraeus crypticus and previously published data for Daphnia magna and Apis mellifera, we assessed the predictive power of the extended GUTS-RED framework for mixture assessment. The extended models accurately predicted the mixture effect. The GUTS parameters on single exposure data, mixture model calibration, and predictive power analyses on mixture exposure data offer novel diagnostic tools to inform on the chemical mode of action, specifically whether a similar or dissimilar form of damage is caused by mixture components. Finally, observed deviations from model predictions can identify interactions, e.g., synergism or antagonism, between chemicals in the mixture, which are not accounted for by the models. TKTD models, such as GUTS-RED, thus offer a framework to implement new mechanistic knowledge in mixture hazard assessments.


Asunto(s)
Daphnia , Modelos Biológicos , Animales , Abejas , Calibración , Medición de Riesgo , Toxicocinética
13.
Environ Pollut ; 272: 115914, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33243544

RESUMEN

The scale of variation in species sensitivity to toxicants has been theoretically linked to mode of action. Specifically, it has been proposed there will be greater variations for chemicals with a putative specific biological target than for toxicants with a non-specific narcotic mechanism. Here we test the hypothesis that mode of action is related to variation in sensitivity in a specifically designed experiment for species from a single ecologically important terrestrial taxa, namely earthworms. Earthworm toxicity tests were conducted with five species for four chemicals, providing a series of increasingly complex modes of action: a putative narcotic polycyclic aromatic hydrocarbon (fluoranthene), and three insecticides (chlorpyrifos, cypermethrin, imidacloprid) with known neuronal receptor targets. Across all the chemicals, the standard epigeic test species Eisenia fetida and Lumbricus rubellus, were generally among the two least sensitive, while the endogenic Aporrectodea caliginosa and Megascolecidae Amynthas gracilis were generally more sensitive (never being among the two least sensitive species). This indicates a potential for bias in the earthworm ecotoxicology literature, which is dominated by studies in epigeic Lumbricidae, but contains few endogeic or Megascolecidae data. Results confirmed the lowest range of variation in sensitivities for effects on reproduction was for fluoranthene (2.5 fold). All insecticides showed greater variation for species sensitivity (cypermethrin: 7.5 fold, chlorpyrifos: 10.3 fold, imidacloprid: 31.5 fold) consistent with the specific mechanisms of the pesticides. Difference in toxicodynamics, based on mode of action specificity and receptor complexity was reflected in the magnitude of sensitivity variation. However, measurements of tissue concentrations also indicated the potential importance of toxicokinetics in explaining species sensitivity variations for chlorpyrifos and cypermethrin.


Asunto(s)
Cloropirifos , Oligoquetos , Plaguicidas , Contaminantes del Suelo , Animales , Ecotoxicología , Contaminantes del Suelo/toxicidad
14.
Nat Nanotechnol ; 15(9): 731-742, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807878

RESUMEN

Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals. Here we present the developing knowledge, practical considerations and key principles need to support exposure assessment for engineered nanomaterials for regulatory and research applications.


Asunto(s)
Exposición a Riesgos Ambientales/efectos adversos , Nanoestructuras/química , Nanoestructuras/toxicidad , Nanotecnología/métodos , Medición de Riesgo/métodos , Disponibilidad Biológica , Exposición a Riesgos Ambientales/prevención & control , Humanos , Termodinámica
15.
Small ; 16(36): e2000618, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32402152

RESUMEN

In the environment, nanomaterials (NMs) are subject to chemical transformations, such as redox reactions, dissolution, coating degradation, and organic matter, protein, and macromolecule binding, and physical transformations including homo or heteroagglomeration. The combination of these reactions can result in NMs with differing characteristics progressing through a functional fate pathway that leads to the formation of transformed NM functional fate groups with shared properties. To establish the nature of such effects of transformation on NMs, four main types of studies are conducted: 1) chemical aging for transformation of pristine NMs; 2) manipulation of test media to change NM surface properties; 3) aging of pristine NMs water, sediment, or soil; 4) NM aging in waste streams and natural environments. From these studies a paradigm of aging effects on NM uptake and toxicity can be developed. Transformation, especially speciation changes, largely results in reduced potency. Further reactions at the surface resulting in processes, such as ecocorona formation and heteroagglomeration may additionally reduce NM potency. When NMs of differing potency transform and enter environments, common transformation reaction occurring in receiving system may act to reduce the variation in hazard between different initial NMs leading to similar actual hazard under realistic exposure conditions.


Asunto(s)
Células , Ambiente , Nanoestructuras , Animales , Bioacumulación , Biotransformación , Células/efectos de los fármacos , Células/metabolismo , Agua Dulce/química , Nanoestructuras/química , Nanoestructuras/toxicidad , Propiedades de Superficie , Factores de Tiempo
16.
Ecotoxicol Environ Saf ; 188: 109882, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31698175

RESUMEN

Microplastics attract widespread attention, including for their potential to transport toxic chemicals in the form of plasticisers and associated hydrophobic organic chemicals, such as polybrominated diphenyl ethers (PBDEs). The aims of this study were to investigate how nylon (polyamide) microplastics may affect PBDE accumulation in snails, and the acute effects of nylon particles and PBDEs on survival, weight change and inherent microbiome diversity and community composition of the pond snail Lymnaea stagnalis. Snails were exposed for 96 h to BDEs-47, 99, 100 and 153 in the presence and absence of 1% w/w nylon microplastics in quartz sand sediment. No mortality was observed over the exposure period. Snails not exposed to microplastics lost significantly more weight compared to those exposed to microplastics. Increasing PBDE concentration in the sediment resulted in an increased PBDE body burden in the snails, however microplastics did not significantly influence total PBDE uptake. Based on individual congeners, uptake of BDE 47 by snails was significantly reduced in the presence of microplastics. The diversity and composition of the snail microbiome was not significantly altered by the presence of PBDEs nor by the microplastics, singly or combined. Significant effects on a few individual operational taxonomic units (OTUs) occurred when comparing the highest PBDE concentration with the control treatment, but in the absence of microplastics only. Overall within these acute experiments, only subtle effects on weight loss and slight microbiome alterations occurred. These results therefore highlight that L. stagnalis are resilient to acute exposures to microplastics and PBDEs, and that microplastics are unlikely to influence HOC accumulation or the microbiome of this species over short timescales.


Asunto(s)
Éteres Difenilos Halogenados/metabolismo , Lymnaea/efectos de los fármacos , Microbiota/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/metabolismo , Animales , Carga Corporal (Radioterapia) , Exposición a Riesgos Ambientales/análisis , Retardadores de Llama/análisis , Retardadores de Llama/metabolismo , Retardadores de Llama/toxicidad , Éteres Difenilos Halogenados/análisis , Éteres Difenilos Halogenados/toxicidad , Lymnaea/metabolismo , Lymnaea/microbiología , Nylons/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
17.
Environ Pollut ; 255(Pt 1): 113238, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31655460

RESUMEN

The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the "hologenome" of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.


Asunto(s)
Accidente Nuclear de Chernóbil , Microbiota/efectos de la radiación , Oligoquetos/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Bacterias/efectos de los fármacos , Epigénesis Genética , Microbioma Gastrointestinal , Oligoquetos/efectos de los fármacos , Oligoquetos/microbiología , Oligoquetos/efectos de la radiación , Exposición a la Radiación , Monitoreo de Radiación , Radioisótopos , Suelo/química
18.
Environ Pollut ; 255(Pt 2): 113174, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31634786

RESUMEN

Terrestrial environments are subject to extensive pollution by plastics and, based on the slow degradation of plastics, are likely to act as long term sinks for microplastic debris. Currently the hazards of microplastics in soil and the potential impacts on soil organisms is poorly understood. Particularly the role of particle characteristics, such a size or polymer type, in dose-response relationships for microplastics is not known. The aim of this study was to assess the ingestion and toxicity of nylon (polyamide) particles, in three different size ranges, to Enchytraeus crypticus in a soil exposure. Effects were also compared with those of polyvinyl chloride (PVC) particles, in a single size range. Nylon particle ingestion was confirmed using fluorescence microscopy, with greatest ingestion for particles in the smallest size range (13-18 µm). To investigate how particle size affected survival and reproduction, E. crypticus were exposed to nylon particles in two well-defined size ranges (13-18 and 90-150 µm) and concentrations of 20, 50, 90 and 120 g/kg (2-12% w/w). An intermediate nylon size range (63-90 µm) and a larger sized PVC particle (106-150 µm), both at 90 g/kg, were also tested. Survival was not affected by either of the polymer types or sizes. Reproduction was significantly reduced, in a dose-dependent manner, by the nylon particles at high exposure concentrations (>90 g/kg). Smaller size ranges (13-18 µm) had a greater effect compared to larger size ranges (>63 µm), with a calculated EC50 for the 13-18 µm size range of 108 ±â€¯8.5 g/kg. This greater hazard could be qualitatively linked with the ingestion of a greater number of smaller particles. This study highlights the potential for toxic effects of plastics in small size ranges to soil organisms at high exposure concentrations, providing understanding of the hazards microplastics may pose in the terrestrial environment.


Asunto(s)
Microplásticos/toxicidad , Oligoquetos/fisiología , Contaminantes del Suelo/toxicidad , Animales , Contaminación Ambiental , Oligoquetos/efectos de los fármacos , Tamaño de la Partícula , Plásticos/toxicidad , Reproducción/efectos de los fármacos , Suelo
19.
Ecotoxicol Environ Saf ; 166: 26-34, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30243044

RESUMEN

Daphnia magna were exposed to two pesticides in the presence or absence of microplastics (300 000 particles ml-1 1 µm polystyrene spheres) and to microplastics alone. The pesticides were dimethoate, an organophosphate insecticide with a low log Kow, and deltamethrin, a pyrethroid insecticide with a high log Kow. Daphnia were exposed to a nominal concentration range of 0.15, 0.31, 0.63, 1.25, 2.5, 5 mg l-1 dimethoate and 0.016, 0.08, 0.4, 2, 5 and 10 µg l-1 deltamethrin. Exposure to polystyrene microplastics alone showed no effects on Daphnia magna survival and mobility over a 72 h exposure. In the dimethoate exposures, mobility and survival were both affected from a concentration of 1.25 mg l-1, with effects were seen on mobility from 28 h and survival from 48 h, with greater effects seen with increasing concentration and exposure time. In deltamethrin exposures, survival was affected from a concentration of 0.4 µg l-1 and mobility from a concentration of 0.08 µg l-1. Effects of deltamethrin on mobility were seen from 5 h and on survival from 28 h, with greater effects on survival and mobility seen with increasing concentration and exposure time. Contrary to expectations, pesticide toxicity to Daphnia magna was not affected by the presence of microplastics, regardless of chemical binding affinity (log Kow). This therefore suggests that polystyrene microplastics are unlikely to act as a significant sink, nor as a vector for increased uptake of pesticides by aquatic organisms. CAPSULE: Polystyrene microplastics are unlikely to act as vector for increased uptake of pesticides by aquatic organisms.


Asunto(s)
Daphnia/efectos de los fármacos , Plaguicidas/toxicidad , Plásticos/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos , Dimetoato/toxicidad , Nitrilos/toxicidad , Piretrinas/toxicidad , Pruebas de Toxicidad Aguda
20.
Environ Toxicol Chem ; 37(10): 2609-2618, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30003578

RESUMEN

Engineered nanoparticles (NPs) entering the environment are subject to various transformations that in turn influence how particles are presented to, and taken up by, organisms. To understand the effect of soil properties on the toxicity of nanosilver to Caenorhabditis elegans, toxicity assays were performed in porewater extracts from natural soils with varying organic matter content and pH using 3-8 nm unfunctionalized silver (Ag 3-8Unf), 52-nm polyvinylpyrrolidone (PVP)-coated Ag NPs (Ag 52PVP), and AgNO3 as ionic Ag. Effects on NP agglomeration and stability were investigated using ultraviolet-visible (UV-vis) spectroscopy and asymmetric flow field-flow fractionation (AF4); Ag+ showed greater overall toxicity than nanosilver, with little difference between the NP types. Increasing soil organic matter content significantly decreased the toxicity of Ag 3-8Unf, whereas it increased that of AgNO3 . The toxicity of all Ag treatments significantly decreased with increasing porewater pH. Dissolution of both NPs in the porewater extracts was too low to have contributed to their observed toxic effects. The UV-vis spectroscopy revealed low levels of agglomeration/aggregation independent of soil properties for Ag 3-8Unf, whereas higher organic matter as well as low pH appeared to stabilize Ag 52PVP. Overall, both soil organic matter content and pH affected NP fate as well as toxicity to C. elegans; however, there appears to be no clear connection between the measured particle characteristics and their effect. Environ Toxicol Chem 2018;37:2609-2618. © 2018 SETAC.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Contaminantes del Suelo/toxicidad , Suelo/química , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Concentración de Iones de Hidrógeno , Iones , Compuestos Orgánicos/análisis , Porosidad , Análisis de Regresión , Reproducción/efectos de los fármacos , Solubilidad , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...